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Abstract

This work discusses a few applications of the recent inversion formula
to various functions. The examples range from elementary to more in-
volved. The purpose is to indicate the way of using the inversion formula
in general. The target audience is among physicists, chemists, biologists
and in other sciences with less inclination to formal mathematics. This
article is subject to future modifications.12
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1 Introduction

1.1 Inversion Formula

The inversion of an analytic function f(z) with a variable z was recently intro-
duced [1]. Let us specify

u = f(z) u, z ∈ C (1)

The formula is an infinite power series whose coefficients can be calculated in
principle for all powers as long as there is no singularity at the point of focus
z0. The singularity would appear if the inverse of the derivative

[
1

df(z)
dz

]z0 (2)
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at z0 is not finite. This will take place if the derivative is zero at z0. The
inversion formula is the following. Let

u = f(z) (3)

and f(z) be analytic over the interior of a circle

r0 = |z − z0| (4)

Let the inverse function g(u) be analytic over the interior of a circle R0 at u0

R0 = |z − z0| (5)

Then the Taylor series

z = z0 +

∞∑
n=1

(u− u0)n

n!
[(

1
df(z)
dz

d

dz
)n−1

1
df(z)
dz

]z0 (6)

represents the inverse function. The necessary, but not sufficient, condition for
convergence is that the first derivative of f(z) is nonzero at the point of focus z0.
Proof of this formula is presented in [1]. The formula is valid for analytic func-
tions and for real-valued functions as well. It gives a formal inversion method
even if the function is not analytic.

1.2 Algorithm or Method

The method of processing the inversion is the following. We need to calculate
coefficients at each n for the Taylor power series. The irregular coefficient part
is as below.

[(
1

df(z)
dz

d

dz
)n−1

1
df(z)
dz

]z0 (7)

This is evaluated at z0 by differentiating (n−1) times and evaluating each term
at z0. The full Taylor series coefficient can then be written as

(u− u0)n

n!
[(

1
df(z)
dz

d

dz
)n−1

1
df(z)
dz

]z0 (8)

When a ”sufficient” number of terms is available, one may sometimes be able
to deduce a general trend for the coefficients. In complex cases, no apparent
regular behavior is seen. Usually it is wise to calculate a few terms more, than at
first sight seems necessary. Some less trivial functions may produce unexpected
terms, like zeroes, seemingly irregularly and one should not jump to conclusions
too quickly.

While calculating the coefficients, it may become obvious, what is actually
the underlying trend. A pattern may repeat itself in the calculations and that is
usually a sign of a trend or a sensible formula for the coefficients. It is very useful
at this point to recall power series expansions of known functions. Such are
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the binomial series, exponential function, various expansions for the logarithm,
trigonometric and hyperbolic functions etc. In complex cases, there seems to
be no trend and one has to suffice with a set of beginning terms approximating
the inverse function. Still, there may be groups of terms in the series which are
identified leaving the rest unidentified. Sometimes also representing the function
with a combination of other equivalent functions may lead to a more favorable
process of inversion.

The convergence of the new series of the polynomial (u − u0)n should be
tested carefully. There is not much that can be said in general about it. The
reader should refer to standard convergence tests.

It is interesting to note that analyticity is not essential for the working of
the formula. The inversion formula offers a method for generating a formal
expansion for the inverse. The real variable case is free from this fact and
convergence is most important. Analyticity requirement for a complex-valued
function is defined in Appendix A.

2 Application of the Inversion Formula

In the following we apply this formula to a few examples of varying complexity.
Some of them are analytic.

2.1 Example 1

The simple function below is attempted to be inverted. We are using a general
point of focus z0 here without fixing it to any certain value.

u = f(z) =
1

z
(9)

This function is not analytic at z = 0 and has a simple pole at z = 0 but is
elsewhere analytic. The inverse of the derivative is

1
df(z)
dz

= −z2 (10)

We are now able to calculate each term in sequence, starting from n=1. The
singular points of this function are at infinity and should not create any problems
while working at finite values.

(
1

df(z)
dz

)z0 = −z20 , n = 1 (11)

(
1

df(z)
dz

d

dz

1
df(z)
dz

)z0 = 2z30 , n = 2 (12)

((
1

df(z)
dz

d

dz
)2

1
df(z)
dz

)z0 = −2 · 3z40 , n = 3 (13)
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((
1

df(z)
dz

d

dz
)3

1
df(z)
dz

)z0 = 2 · 3 · 4z50 , n = 4 (14)

((
1

df(z)
dz

d

dz
)4

1
df(z)
dz

)z0 = −2 · 3 · 4 · 5z60 , n = 5 (15)

Now it is obvious that the pattern is there and we can write the general formula
for the inverted function as follows.

z = z0 +

∞∑
n=1

(−1)n · (u− u0)n · zn+1
0 · n!

n!
(16)

After a simplification we have

z = z0 ·
∞∑

n=0

(−1)n · (u− u0)n · zn0 (17)

We recognize this to be the binomial expansion and we can replace the sum
with the source, obtaining.

z =
z0

1 + z0 · (u− u0)
(18)

On the other hand, we know that

u0 =
1

z0
(19)

and we can place it to the result yielding

z =
1

u
(20)

According to common knowledge, this is a correct inverse of the original func-
tion. The range of validity is with finite values of z delivered by finite values of
u. It is worth noting that there is no dependence on the point of focus z0 in the
result, at the same time appreciating the fact that it must not be zero for us to
operate with finite values of u0

2.2 Example 2

The following function below is attempted to be inverted. We are using a general
point of focus z0 here without fixing it to any certain value.

u = f(z) = ln(z) (21)

The inverse of the derivative is

1
df(z)
dz

= z (22)
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We are now able to calculate each term in sequence, starting from n=1.

(
1

df(z)
dz

)z0 = z0, n = 1 (23)

(
1

df(z)
dz

d

dz

1
df(z)
dz

)z0 = z0, n = 2 (24)

((
1

df(z)
dz

d

dz
)2

1
df(z)
dz

)z0 = z0, n = 3 (25)

((
1

df(z)
dz

d

dz
)3

1
df(z)
dz

)z0 = z0, n = 4 (26)

((
1

df(z)
dz

d

dz
)4

1
df(z)
dz

)z0 = z0, n = 5 (27)

It is again obvious what is the pattern and we can write the general formula for
the inverted function as follows.

z = z0 +

∞∑
n=1

(u− u0)n

n!
· z0 (28)

After a simplification we have

z = z0

∞∑
n=0

(u− u0)n

n!
(29)

We recognize this to be the expansion of the exponential function.

z = z0 · exp(u− u0) (30)

Since
u0 = ln(z0) (31)

we can place it to the equation and obtain

z = z0 · exp(u) · exp(−ln(z0)) (32)

and after simplifying we get

z = z0 · exp(u)
1

z0
= exp(u) (33)

This is a known inverse function for the ln(z). Notice that both functions ln(z)
and exp(z) have branches in the complex case. In addition, the function ln(z)
was not analytic but we still ended up with an analytic inverse for it. For real
variables, this is not an issue. In the real variable case, the limitation

0 < z (34)

is a safe working range. It is worth noting again that there is no dependence on
the point of focus z0 in the end result.

5



2.3 Example 3

The following function is to be inverted. We are using a point of focus z0 = π/2.

u = f(z) = sin(z) · exp(−z) (35)

The function is analytic at finite z. The inverse of the derivative is

1
df(z)
dz

=
−exp(z)

sin(z)− cos(z)
(36)

At the point of focus it becomes

[
1

df(z)
dz

]z0 = −exp(π/2) n = 1 (37)

We start calculating terms, from n=1.

(
1

df(z)
dz

d

dz

1
df(z)
dz

)z0 = 0, n = 2 (38)

((
1

df(z)
dz

d

dz
)2

1
df(z)
dz

)z0 = −2 · exp(3 · π/2), n = 3 (39)

((
1

df(z)
dz

d

dz
)3

1
df(z)
dz

)z0 = −4 · exp(4 · π/2), n = 4 (40)

There seems not to be any pattern, at least as seen from this small number of
terms. We need to approximate the inverted function with a polynomial.

z = z0 + (u− u0) · (−exp(π/2)) +
(u− u0)2 · 0

2!
+ . . . (41)

. . .+
(u− u0)3 · (−2 · exp(3 · π/2))

3!
+ . . . (42)

. . .+
(u− u0)4 · (−4 · exp(4 · π/2))

4!
(43)

After a simplification we have

z =
π

2
+

7

6
− 4 · u

3
· exp(π/2) +

1

3
· u3 · exp(3 · π/2)− u4

6
· exp(4 · π/2) (44)

The value at the point of focus is

u0 = exp(−π/2) ≈ 0.208 (45)

We seem to have a converging series of u since the series is probably alternating
and the coefficients resemble inverse factorials of the (power−1) (very scientific,
isn’t it!). It is left for the reader to carry on calculating more terms to this series
and be assured of the convergence. In this case there is a dependence on the
point of focus z0 in the result implicitly.
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2.4 Example 4

The following function is attempted to be inverted. We are using a general point
of focus z0 here without fixing it to any certain value.

u = f(z) =
1

1− z
(46)

This function is not analytic at z = 1 and has a simple pole at z = 1 but is
elsewhere analytic. The inverse of the derivative is

1
df(z)
dz

= (1− z)2 (47)

We are now able to calculate each term in sequence, starting from n=1. The
singular points of this function are at infinity and should not create any problems
while working at finite values.

(
1

df(z)
dz

)z0 = (1− z0)2, n = 1 (48)

(
1

df(z)
dz

d

dz

1
df(z)
dz

)z0 = −2 · (1− z0)3, n = 2 (49)

((
1

df(z)
dz

d

dz
)2

1
df(z)
dz

)z0 = 2 · 3 · (1− z0)4, n = 3 (50)

((
1

df(z)
dz

d

dz
)3

1
df(z)
dz

)z0 = −2 · 3 · 4 · (1− z0)5, n = 4 (51)

((
1

df(z)
dz

d

dz
)4

1
df(z)
dz

)z0 = 2 · 3 · 4 · 5 · (1− z0)6, n = 5 (52)

The pattern is there and we can write the general formula for the inverted
function as follows.

z = z0 −
∞∑

n=1

(−1)n · (u− u0)n · (1− z0)n · n!

n!
(53)

After a simplification we have

z = z0 + 1−
∞∑

n=0

(−1)n · (u− u0)n · (1− z0)n (54)

We again recognize this to be the binomial expansion and we can replace the
sum with the source, obtaining.

z = z0 + 1− 1

1 + (1− z0) · (u− u0)
(55)

When simplified it becomes as follows.

z =
z0 + (1− z20) · (u− u0)

1 + (1− z0) · (u− u0)
(56)

This is the correct inverse of the original function as is easy to verify.
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2.5 Example 5

The function below is inverted next. We are using a general point of focus z0
here without fixing it to any certain value.

u = f(z) =
√
z (57)

This function has a branch line as is well known. The inverse of the derivative
is

1
df(z)
dz

= 2 ·
√
z (58)

We are now able to calculate each term in sequence, starting from n=1.

(
1

df(z)
dz

)z0 = 2, n = 1 (59)

All higher coefficients are zero. The pattern is trivial and we can write the
general formula for the inverted function as follows.

z = z0 + (u− u0) · 2 ·
√
z0 +

(u− u0)2

2!
· 2 (60)

Since
u0 =

√
z0 (61)

we can simplify to
z = u2 (62)

This is the correct inverse of the original function as is well known. Note again
that the z0-dependency disappeared and we also obtained a truly analytic func-
tion. As an exercise to the reader, please do the same in reverse to obtain the√
z function from the function u2.
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A Appendix. Analyticity Requirement for a Func-
tion

For a complex-valued function to be analytic in some region S of complex values,
it must comply to the following [2]. The function can be divided to real and
imaginary parts as follows.

f(z) = u(x, y) + i · v(x, y) (63)
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The Cauchy-Riemann conditions must be obeyed, as below, throughout the
region S.

du(x, y)

dx
=
dv(x, y)

dy
(64)

and
du(x, y)

dy
= −dv(x, y)

dx
(65)

Also the derivatives must be continuous. If these requirements are valid in the
whole complex plane (excluding infinities), the function is analytic everywhere
and is called entire. The requirement of analyticity is severe for complex func-
tions.
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