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ABSTRACT

An electron gun and a beam transport system sultable for x-ray sxcitation
of gaseous samples has been designed. It is intended to serve as an

x-ray source for a grating spectrometer betow | keV energles.

The constraints put on the size and position of the source by the
spectrometer slit system at given resolution are studied. Then the
winimal beam radius Vimited by space charge is calculated, and the
basic design parameters are flxed.

The elactron gun is of Pierce type with a perveance of P = 3 x _aau

and converging angle of _wo. The electron acceleration voltage is
variable between 5 and 10 kV and the maxlmum output current s 0,3 A,
The calculated minimum beam radil {defined to include 95 % of the
electrons of the beam} are 0,73 and 0,59 mm 2.:. S and 10 kV respectively.

The gun shoots the electrons into a three stage beam transport system,
which facilitates efficient differentlal pumping making possible to
maintain the pressures of the electron gun and sample csll at 0,1 mPa
and 1 kPa respectively in a windowless container. The transport
system consists of three magnetic fronless lenses two of which have
unit magnifications imaging the gun focus Into narrow channels
between succesive pumping stages. The third stage finally compresses
the beam in a linear ratio of 0,429 into the sample gas chamber.

1. INTRODUCTION

Measurement of x-ray emission spectra from gases and vapors is difficult
especially in ultrasoft reglon. tLow density as compared to solids

and liquids leads unavoldably to low emission intensities. Below

about 1 keV energy, where grazing incidence grating spectrometers

can give higher resolution than crystal spectrometers, bright and
narrow sources are needed. Regular photon sources have moderate
brightness but the beam is strongly divergent. Excliting by an electron
beam of high brightness can be obtalned, but a windowless system is

a prerequisite. Thus we are faced with the problem of gas confinement.

Comparing the results from the systems built elsewhere Tn& e

decided to use electron excitation. In this paper we describe the
theory of the electron optical system needed for the purpose and finally
design the whole excitatlon gun, which at the present is being made

in the laboratory.

Fig. 1.1. depicts the excitation gun. An electron beam (5-10 kev)
ejected from & Plerce~type electron gun is focused by magnetic lenses
twe times into parrow channels to facilitate differential pumping
and the third time Into the sample gas cell itself. This arrangement
allows to maintain a gas pressure of | kPa in the sample while the
electron gun stage works ot 0,1 mPa, a pressure low encugh for
reasonable 1ifetime of a hot cathode. The dasign of the vacuum
pumping system _uwaoa dealt here.

Magnetlc lenses are reallzed by three Identical fronless colls: two
of them have unit magnification whereas the third compresses the
electron beam entering the sample gas chamber. The pervsance

P =32, (.1

where | Is the beam current and V the accelerating ancde voltage,

has been selected moderate to obtaln a falrly narrow beam, which can

be focused eas)ly and stil} get out reasonable x-ray intensfity. The
conservative value of P saves us also from involved computer calculations
and experiments with electrolytic tanks, which are necessary in the
design of very high perveance guns,



In section 2.1, we represent the theory of space charge limited
electron beam and calculate spreading as well as the optimum value
of linear compression. Section 2.2. deals with the requlrements
set by the siit system of the spectrometer.

Chapter 3. is devoted to study the theory and design of the electron
gun., Sections 3.1.-3.6. describe how to obtain the pasremeters of
the gun and section 3.7. describes the effects of thermal velocitles
of the electrons.

In chapter 4. we Investigate the approprlate focusing system by
calcutating the fleld of a coil, section 4.1., and the focal length,
sections 4.2, and &.3. whereas In section 4.4. we put together ald

the information obtained from the focusing system, Chapter 5.
discusses the results obtained in this work.

Figure 1.1, The beam transport system. A = cathode of the electron
gun, 8 = focusing electrode, { = anode aperture, D = first focusing
coll, E = first orifice for differential pumping, F « second focusing
coil, G = second orifice, H = third focusing coil, | = sample
gas chamber, K = Faraday cup.

2. CONSTRAINTS FOR THE BEAM

In this chapter we solve the w.mr!._a.:. of an electron beam with space
charge In fleld-free region. We calculate the place and the radius
of the minimum for converging cylindrical beams of known perveance.
We also study the spectrometer slit system to see how far from the
entrance slit we can place the radiatlon scurce without too large
intensity losses.

2.1, Limitations caused by space charge

ODue to the repulsive Coulomb force a dense slectron beam spreads out
repldly while travelling In fisld-free space. Therefore also a

beam initially travelling towards the tip of a cone spreads oyt so
that the beem edge deperts from the cone surface and the beam minimum
moves away from the apex of the cone. in the following we are golng
to calculate the place and the radlus of the minimum of & cylindrical
beam,

The equatlon of motion given by Plerce [9] for the beam electrons is
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This can be integrated once
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Since at the minimum R' = 0, Eq. (2.5) yields for minimum radius

ry* 7, el -/ QUJ =k r {2.8)

Here -A s the slope of the beam edge at the initial point and  Is
the beam compression ratio. lntegrating (2.5) further we obtain
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The distance of the beam minimum Is
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This integral can be calculated numerically., £q. (2.7) is shown
graphically in Fig. 2.1.

!

Figure 2.1. Beam spreading caused by space charge [10].

Ar

L= LY N
1

\Aoilc_r_n.u .l»}Xo“o..w:@uf\%., owa: vz A1, N:,mer.w

|
‘
H

Here

Ar = RN\..I o= 17 1/p (2.9)

As will become apparent in the next section small diameter sources
are advantageous and thus we examine rao_.sm with smallest possible
diameter. Since the beam is symmetrical in both directions in field-
free regions, the minimum must be situated in the center of the
volume to be examined. We should determine what kind of a beam of
definlte perveance will flow through a region of known length h and
width § {a cylindrical tube). This describes the situation when

the beam crosses the sample gas chamber and emits radlation from

the same volume Into the spactrometer. To exhibit the fact that &
as & function of k has & minimum (h and P fixed) we have drawn curves
{Appendix A} which are derived graphically from Fig. 2.1.

To calcutate accurately the minimum of §(k) we keep z, and o constant
and differantiate Eq. 2.B. to obtain .mm = 0 at the extremum)

v-In K . v=In x

2 2 -ink
ﬁ_mum eV dued e gy - B8 =0, {2.10)

e a 20v-Tn €

Eq. (2.10) can be turned Into the standard form of transcendental
equatlons, which can be solved employing usual numerical methods

/in «
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Eq. (2.11) has two solutions. The First one k = 0 Is unphysical as
the beam can not be compressed into zero diameter. The other solution
k= 0,029 is evidéntly quite independent of other parameters of the
system and glves a minimum to §. This means that the respective value



of k Is the same for all cylindrical space charge limited beams in

field-free regions.

The compression ratlo K for minimum beam entrance diameter through
a cylinder has been evaluated by Ivey [11] by using a partly
graphical method and his result for k20,426 Is In good accordance
with the value we obtained.

We have chosen for the gun perveance P to be of the order 0,3 . danm
(to be explained in the chapter on gun design) this being approxi-
mately the perveance of the beam. The spectrameter requires the
source height to be of order 10 mm (see next section) and thus we

o 10 be 0,868 mm and 0,19 mm,
respectively. These figures give us some quidelines in choosing

can easlly calculate the values of 6 and r

the gun parameters, its optical properties and the strength of the
Focusing coils.

2.2. Requirements of the slit system

To gain the maximum available amount of radlation coming through the
entrance slit of the x-ray spectrometer on fts concave spherical
diffraction grating we must study the effects of the slit system
carefully, The radiation Is generated In the volume crossed by the
electron beam in the sample gas thus exclting the inner shel)
electrons of the atoms. The shape of the electron beam Is determined
by space charge (cf. Fig. 2.1.) as Is deplicted in Flg, 2.2.

The horizontal section of the slit system Is shown In Fig. 2.3.

The cylindrical source has been replaced by a ribbon source because
the calculations become thus much easler. (n practice there is a
spherical mirror and another slit between the entrance slit and

the concave spherical diffraction grating. To a good approximation
thelr effects can be neglected. The ribbon source is a band of
length h and width M having constant brightness.

§—>

Figure 2.2. The electron beam focused intc the sample gas chamber.

A Is of the order 1 mm., A = entering electron beam, B = radiative

volume, C = exit slit, D = radiation to x-ray spectrometer

Figure 2.3. The slit system and the ribbon source.
R = slit, G = grating,

$ = source,



The calculations are farther simplified by symmetrizing the grating.
This is done by taking the projecticn of the grating to receive the
intensity.

The intensity of radlation arriving at the grating from the point

% tn the source is proportional to the sollid angle 8(x} (a plane

angle in Fig. 2.3.) the grating subtends the point of emission.

The solid angie can be approximated by the product of two plane
angles, 8(x) shown in Flg. 2.3. and the other in the plane
perpendicular to it. This further simplifies the calculations.

The length of the ribbon {not shown in Fig. 2.3.) is Inessential at
this point; we assume It to be large enough to neglect all end effects.

The special points hc. n_. ma and :o are easlly calculated according
to Fig. 2.3.

LM - § L> M, L> &
% = Zs sin F+8°L> s> (2.12)

5L
% = 3z %mn -0 Yo > S5 {2.13)
W.ow AL i \
0 Zssing+s (2.14)

Lin+ ¢8)
R TR ® - H> 6. (2.15)

Now we can divide the f-axis into nwvnn regions according to thelr

limiting properties:

10
1. 0< L < ma The source size does not limit 6.
2. mc < f < -.o The source slize partially limits 0.
3. 2 2 L e, The source size limits B.
b, g, <t The slit and the source size limit 8.

1

Next task Is to calculate how the Intensity varies as the distance
L and other parameters are changed. We are working with an electron
beam, whose total current remains constant for different sizes of
the beam. This means that we must divide the relative intensity
with the besm width N to compensate for the variation of emission

denslty

_.m o(x)dx , _ (2.16)

source

From the geometry of Fig. 2.3. we obtain for the Intensity in region 1

*2
..lw axTSnSGlezu--RngﬁhE*hkw
X
%y ‘
+.._u re tan{d $in ¢~ Xy, are n!_amlmr_mlmlFL . (2.17)
0
where

X

§ . tls sing - 8/2) . +L)s 25 sing {2.18)
7 i it T )

1

After integration and some tedious manipulations we obtaln
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We can calculate the corresponding Intensity factor ___ as above,

A.

€ + ssin ¢) arc nmiE +

2

2, 8 2
L s
= (ssin ¢ - 8/2) arc noiE__ ..W_: tlges sing)

2 ] aa
L™ + (8/2 -5 sin ¢) §
A
= constant, (2.19) H
b— | L
T
]
Sl Tve g
_u W A~+mum.._.3m_.nnm:n Tt } +
Figure 2.4. The third dimension of the source. § = source, R =
N & . stit, G = grating.
M8 77 s sin ¢ =
G - 3) arc tant=; L) - (s sin ¢ - m.u arc nn..TIlI,M-V
L We obtaln for _r
- s
" _r = 2 arc tan n.n.l...lﬂ.u (2.22)
=+ ssin ¥
p, |V G-t L _+T p+_.J~
+3 In W -3 in 3 (2.20) and for the relative total Intensity
m..vmu:.sw s sin ¢ - 5 .
! ; T3T u T — uu_ s
_nOn x 2 arc nb:n.-.lﬂ.._...:_ 1 =1,2,3,4 . (2.23)
and for ___. we have
H_§ z . 8 M2 :
| 1 Az 3 7" 7 2 L=+ 53 We can expect that equations (2.19)=(2.21) together with {2.22) give
- - [ - H — -
bLoN z 7 e m_.A L V+ 7 " LN Alm + Wz * a reasonably good description of the behaviour of real 1(f}) with a
22 beam shaped as in Fig. (2.2} and therefore the graphs of 1{t} have
been drawn with practical parameters of the RSHM-500 spectrometer
: 5§ M {Figs. B.1. and B.2, In Appendix B). The two values of L and &
LL.H
+ n.m + .MU arc nmaﬁn - Nv . (2.21) used are the extreme positions of the grating practical operation
teking place between these, As we can see, the intensity remains

bounded at large distances (we cannot increase Intensity by reducing
source size) and all curves with different M have the same asymptote.

To take into account the third dimension we must consider the geometry At small distances the asymptote bifurcates for each different M

in fig. NL...\ Assuming the height of the source Is equal to or smaller and we recognize the advantage of using small diameter sources as

than the helght of the slit, the slit does not limit the angle 8. the intensity grows faster for small than for large sources.
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The effect of moving the grating closer to the slit is the broadening
of the high intenslty reglons as can be seen from equations (2.12}
and {2.13). Aceording to Eqs. {2.19)-(2.21) approximately

1~ 8 . {2.24)

and thus 6 does not essentially influence the determination of the
region of maximum intensity.

It seems that for practical beam diameters (M % 0,5 - 1,0 mm) the
distance of the beam from the stit should be of arder 40-50 mn to
avold excessive loss of intensity. At 100 mm distance the Intensity
loss is already 70 %.

Mﬂm\% Ntm L . e udy
’ 1 J«‘N«\S\. ey
3. THEORY OF THE GUN d\ o sl bimtm

\vw?cve_..!\.:&?.@a -

3.1. The spherlcal diode M?&C.Z.m?«f Egm!hlh?! . v..L

The current between concentric spheres under the influence of space
charge has been solved analytically and we can use this Information
when calculating the characteristics of a high perveance gun with
the electrodes formed as spherical sectors placed axially.

In the case of two concentric spheres one of them emitting and the
other collecting electrons, Poisson's equation becomes In the presence
of space charge p

~ & - no : G}

if | is the total current and v the velocity of electrons at the
distance r from the center of the spheres, we obtaln

t = tmelpy, (3.2)

The energy relation of the electrons is

14

Wa% .ev, (3.3)

where V equals zero on the surface of the emitter. These equations
lead to

R -V (3.4)

o Tev

04n

This equation can not be solved in closed form, but Langmuir and
Blodgett [12] have shown an elegant method of series solution in
terms of a, a function of r and ﬂn. the radius of the emitter

| 16ne Q z2 mMomfﬂ.M%
- o Jre o 335 (3.5)
T T ) =4 6
Jeo
Here AT
amy - 0,37 ¢ 0,075y - 0,0043182 v} + 0,0021609 v° - 0,0086791 v® + ...,
’ (3.6)
where
Y= _Ounﬁlw . (3.7)
[

Equation {3.5) determines the limiting current of the spherical diode
in terms of the potential between the spheres. it is obvious that
the current depends only on the ratlo of the radil of the spheres.
Because the emitter is outside the collector,y and hence also a are
negative. The function nﬁﬂn\l is shown in table 3.1,

Since the electrodes of the actual gun are segments of half angle 8,
the current relation becomes

Iwﬂu n Ill.»..lm sin (5}, {3.8)
™



form.
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This is the basic equatlon in the design of electron guns of spherical

da/dy

cathode.

It is at the same potential as the cathode and of axially
symmetrical form (Fig. 3.1.).

}

- e —

e R R X L

H
1.00 00000 000000  1.0000 % 2.12 0.94729  0.94407
1.0l 0.0000996 0.00215 BL0OW | 245 096124  0.97199
1.07  0.00019¢5 0.0054008 01,0119 1 2.17 099098  0.99398
1.05  C.00H5  0.0IBIE 010298 | 2.0 1.00627 102408
110 000962 004324 010592 | 2.28 L3S 1074
1.5 0.42127  0.07676  01.0884 | 2.3 11928 1.1248
120 0.036 00135 01172 § 2.35 LaMs 11758
.25 Q.05TI0  O.14828 011457 | 2.40 13581 42264
130 0.08091  0.18%06  O.1739
135 0.10842 0.22137  OL.0H
140 0.13949  ©.26897  01.229%
145 01199 0.31166  OL.IM
§.50 0.218  D.3553% 01284
155 0.25276 0.39971 0L
1.60 029681 0.4497 011K
1.65  0.M386 0.49082 O0L.364 ). . ;
170 039380 0.53126 013912 {350 1.6634 23184
175 0.44655 0.58422 014174 (370 41673 2.5896
L8} 05012 0.60186 0. 49662  2.9108
185 0.56016 0.67953 0l 64057 M2
190 0.6088 0.727% Ol 7.9708  3.9903
1.92  0.64389 0.74T0 Ol . 146 30830
195 06414 0.77642 015204 | 7.00 1538 5787
197 0.71013  ©0.79596  01.5306 [10.00 2919 9.4802
200 0.749835 082537  01.5458 {30000 178.2 31.667
202 0.7%682  0.84504  01.555% | 50.00  395.3 13.861
205  Q.8L798  0.8M64  01.5710 [100.00 Ll44 109,380
207  0.84589 0.89442  OL.38I0 [300.00 603 1,324
2.0 008846 092418 s.Ssﬂse.S 13015 53,294
i
Table 3.1. a as a function of ﬂn\.@c&.
3.2. The focusing electrode

The effect of the missing electrons around the conical sector of
half angle 8 is replaced by using a focusing electrode around the

Analytical solution of the form of the focusing electrode ts difficult
but it has been done in closed form for axially symmetric flow between
planes (Pierce-type gun [9,14,15]), The focusing electrode should
maintain the potential distribution on the edge of the beam as In

i6

the presence of space charge from the other electrons In the spherical

diode to satisfy the requirements of Polsson's and of Laplace's
equations,

Figure 3.1. The spherical electron gun and definiticn of Its dimensions.
A = Anode, 8 = actual beam edge, C = cathode, 0 = the center of anode
and cathode spheres, D = deflected focus, F = focusing electrode,

P = cardinal plane of the anode lens.

There are also other analytical and numerical methods for selving
the shape of the focusing electrode [16,17,18,19]. However, they
are too complicated to be used in this work.

3.3. Effects of the anode aperture

Now we are in a position to choose the cone half-angle B and fix

the ratlo ﬂr\ﬂn using the Langmuir solution Eq. (3.8} for the desired
perveance. However, as we will see later the random choice of 8

does not necessarily result in good gun performance and desired optical
quality. The maln reason for this is the effect of the anode

aperture because it acts as a divergent lens. This may cause variations
tn emissivity at cathode surface due to deviation of the potential

distribution from ideal In the neighbourhood of the symmetry axis.

As a first approximation for the focal length of the anode lens we
can use a formyla by Davisson and Calbick [20,21]




. (3.9)

Here mnTE is the axial electric field behind the ancde and m_ is
the axial field inside the gun. E, can easily be calculated from

the expression of the potential

hy y b >

m nq.
E o3 ﬁm«gm (3.10}

a a

and *cn becomes
wnﬁ r

v 3.11)

Birdsall [22] has calculated a space charge correctlon for the focal
length in the anode aperture leading approximately to 10 % reduction
% {P5scht and Veith [23]). This result
is In fair accordance with the results of Brewer [24].

for perveance value 0,3 * 10

Kirstein and Hornsby [25] have developed am iterative solution method

of Poisson's and Laplace's equations producing also electron trajectorles,
It consists of solving Poisson's equation in self-consistent manner

and tracing the trajectories between the steps (see also the method

of Amboss [26]).

Brewer [13] has shown graphically the experimental behaviour of the
deflecting angle 8 - f versus perveance,Flig. 3.2., compared with the
value obtalned according to Egs. (3.11) and 3.12)

6 = f = arc tan (3.12)

From the experimental points shawn in Fig. 3.2. one can calculate
the rea) focal length and the ratio I' = mua\mno_... (Fig. 3.3).

For a good magnetic beam focusing the stope of the beam edge coming
from the anode must cbey Tu”_
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Figure 3.2. Deflection of the beam edge behind the anade aperture,
_..G“_ » O = experimental data, DC = Davisson-Calbick theory mmc.“_ . hu_.._ .
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Figure 3.3. Ratio of calculated to experimental focal length, ©® =
experimental data, [13}.

IAlNllAnaor M- (3.13)

Thys the optimum cone half-angte of the gun can be calculated and
fixed for chosen perveance

wown =(6-8)+0,4"0n (3.14)

and this Is shown in Fig, 3.4,

k.
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Figure 3.4. The optimum convergence angle ([13]).

3.4, The cathade

The first phase in fixing the gun parameters is to determine the
properties and dimensions of the cathode surface. For Interchangeable
cathodes, the lifetime of which does not have to be very tong, pure
tungsten suits best. Although it can be polsoned by some reactive

gases it is not as sensitive for them as many other commonly  uded
cathode materials. The most important limiting factor for the

lifetime is the mass deposit from the cathode surface at high temperatures.
This thins down the cathode wires or ribbons and after some loss of
material (usually 12 %) the cathode will burn out.

in the present case the maximum ratings are: cathode current _n =

0,3 A, anode voltage 10 kV and perveance P = 0,3 * _c-m. By

choosing the maximum emission current density 3,5 p\nau at temperature
2800 K we can calculate the characteristics of the cathode from the
tables and graphs of von Ardenne [27]. His tables glve for a

cathode made of a ribbon of tungsten a thickness of 0,9 mn,  The
respective lifatime Ts about 210 h. We chose to use tungsten ribbon
instead of wire or hairpin model due to the high cathode current.

The calculated effective surface area of the cathode was 8.6 san c:n.

we chase a slightly larger vatue 10,24 siu ta compensate for various

losses caused by bending the edges of the ribbon and other deficiencles
in its fabrication, Fig. 3.5.

20

Flgure 3.5. The ribbon cathode. The clrcutar area around the
cathode has the same radius of curvature as the cathode although it
does not emit elactrons. Dimensions are In mm. C = cathode, F =
focusing electrode, G = mmﬂ = 0,1 mm, r_= calculational radius =

<
3,0 mm.

To make easier the turning of the focusing electrode the circular
area of radius L 3,0 mm around the cathode had the same radlus
of curvature as the active cathode surface and this value for e
was used In later calculations. It Is obvious that thls causes

some effects on the optical and clectrical properties of the gun

but this decision was necessary for the laboratory workshop.

The form of the focusing electrode was found experimentally by
varying the apex angles of the two cones (Flg. 3.5.) to obtaln the
desired optical and electrical quality for the gun. Usually this
Is done with the ald of an etectrolytic tank or other analogous
methods. It was, however, sufficient for present purposes to do
this experimentally in a working gun prototype.
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3.5, Gun parameters

The optimum angle of convergence, mo...; = 13°, for the gun can be

read from Fig. 3.4. Since the radius of the cathode re is already

fixed the radius of curvature of the cathode is now available for

us from the geometry of the gun (Fig. 3.1.})

¥

- <
Wﬂ - Mﬂ L AN-dMW

T, €an be obtained from the solution of Langmuir and Blodgett, which

is represented graphically In Fig., 3.6.
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Figure 3.6. ﬂm r_ as a function of @ with the perveance as a

parametar, M_ u”_ .

The course of determination of gun parameters can be shown as In

the flow chart in Fig. 3.7.

The values of "o and n___ for the two dlfferent focal lengths were
calculated employing equaticns (2.6) and {2.8). In the evaluation
of (2.8) we used Simpson's rule abtaining quite sufficlent accuracy.
as functions of

corr
perveance was done directly from Eq, (2.8) and the results of these

The determination of the behaviour of man and f
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10.

1.

- Q
Bppt = 13

T = 2800 K

1

t.= 210 h
d= 0,49 mm

}

TR
3,5 A/cm

e
L)

!

A = 10,24 m®
3,0 »m

-
1 ]

Y

-vl‘
]

13,34 mm

!

ali
]

5,54 wm
r_= 1,25 mm

¥

Foc = 11,12 mm
f = ~9,07

earr
'

= 10,50 mm -
= 10,1191

Ppg
Ape

i

__.nol. = 13,34 mm
Acore ™ 040937

Cotr @

ro (Bt} = ¢,26 mm

r..a_Aoo_.l = 0,48 mm
\~=_93 = 13,01 om
.N.__Ano_.-.v = 1, 1 b

22

Figure 3.7. The determination of gun parameters.

~. monn Is obtained T.o.._‘ﬂ_u. 3.h.

3. See text, d = thickness of the cathode ribbon.

k., The maximum cathode current density .ﬂn is
defined by the maximum current *n. cathode
temperature and 1lifetime,

5. Cathode emissive area [s defined by hn and

I. This gives the calculational e

6. r, comes from Eg. (3.,15).

w. T Is obtailned from Fig. 3.6. and ‘a from

r.o=r_ sind,
a a

B. man is from €q. (3.11) and mno_‘.. Is from

Fig. 3.3.

9.510. Poc is the place of the tip of the deflected
cone. 1t can be calculated using q, the distance

of the original focus from the anocde (see Fig.

3.1.) by the lens equation {FWHG\
The P -
n-.mmﬁ Nﬂaow (3.16) §\$

r @:Je
-2 - 7+
el tant - £en (3.7 F 1-f1
»un and »nol. are the slopes of the beam edge
far DC- and corrected theory. They are chtained
from Ta
A= - (3.18)

1t r and Na are calculated by eqs. (2.6) and

(2.8) respectively.
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calculations are shown in Appendix 0, where we also have ™ qanvu

for both focai lengths.

in these calculations, of course, we suppose the geometry of the
gun fixed and only the perveance is varied. Fig. C.t. in Appendix
C shows that the point of minimum does not move very much as the
The range of the minimum polnt Is about

However,

perveance is changed.
3-4 mm and does not depend much on the chosen focal length.

z, varies rather strongly with f,

3.6, Effects of thermal velocities

The electrons emitted from the cathode surface have inftial veloclties
distributed over all directions. in the electric fleld the electrons
accelerate towards the anode. Thus the fina) velocity near the
anode is a superimposition of the velocity galn In the fleld and the
thermal velocity. Therefore the beam becomes somewhat diffuse.
This paturally continues after the anode aperture throughout alt
the beam. The distribution of the current density is approximately
Gaussian at the edges of the beam due to the fact that the electrons
abey Boltzmann's velocity distribution when leaving the hot (T % 2000

-3000 K) cathode.

Cutler and Hines [28] have calculated the effect of thermal velocitles
on the behaviour of the beam. They derived the standard deviation
of the current density %H at the beam edge for different gun

geometries (Fig. 3.8}.

banielson et al. [29] have refined the calculations of o and other
gun properties taking Into account the action of the anode lens
which is, however, small. We use the results by Cutler and Hines In
evaluating the beam spread. As a matter of fact, their qn_._ is not
the standard deviation of the Gaussian (see thelr Eq. mww* and there-
fore the real o must be read from the graphs of the current density
profiles, Cutler and Hines have given the beam profile curves as

a function of radius, Fig, 3.9..

e
1
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Figure 3.8, Standard deviation Ien for various gun geometries
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Figure 3.9. Thermatly diffused current density of the electron

beam, [28].

The standard deviation Oy Can be read from Fig. 3.8

of which are given for the present example in table 3.2,

+y the values
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Table 3.2. %eu for two extreme voltages (T = 2800 K). a at anode ,
o at the beam minimum. r__ and r__ are nomlnal beam radii and
m ea em

fon 15 calculated using ref. [20,21]. Distances in mil)imeters,

Va (kv) TrcH TatH Tem(DC) "ea
5 0,195 0,111 0,263 1,25
10 0,282 o,0774 0,263 1,25

The beam losses and the thermal load of the anode can be calculated
approximately by dafining the percentage of electrons outside a
certain radius n the beam,

We can calculate the portion of electrons outside a8 given radius
since in principle we know the standard deviation o of the Gaussian.
We suppose the beam current density to be of the form {Flg. 3.10).
- len? .
unw

Jry=4°¢
1

- X

| A

R (3.19)

L ]
ta | v

jin

=
L) 4

Figure 3,10, The assumed shape of the radial current density.

The standard deviation of the Gaussian 0 becomes In this model in

terms of the half-helght width )

T - AP
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S T (3.20)
1_3ﬂ
We define the amounts of electrons in different regions
i .__.xN 0<r<R
(s * Lr<R, {3.21)
o
TPy FP 4
Iy =2 {drre {r-R)/20"
R
naf20 + JZm R, r>R . (3.22)

Now we want to know the portion of electrons outside the arbitrary
radlus R (> R). Deflning

ST PN
T dr re{FrR 20" =

R

2 (R -R%/207 - ®

wma” e + T/ ok erfc

QL

) (3.23)
VZ o

the relative number of electrons outside s_. becomes

-(R -Ry%/20° R =R
L ua.umvu e F + V2n Amw- nqmnﬁum_.mlu

I . (3.24)
mh _+~Amu~+\»ﬂﬂmv

-
This tells us the relative amount of the beam power dissipated at the anode
with a hole of radius R (= r ).

Now we evaluate the beam losses approximately employing equation
(3.24) after drawing the current density profiles using Fig. 3.8.
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They are shown in Fig. 3.11. and from these curves we define the

radius R and the Gaussian deviation g. We obtain for the anode

dissipation the values given in table 3.3. For sr we take three

different values to exhibit the behaviour of the dissipation with .q
varying anode aperture. The curves shown in Fig. 3.11. follow very '
well Gaussian distributions.

Jo 00K
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Figure 3.11., Current density distributions at the anode and the
beam minfmum (0C-model}.

Toble 3.3. Power losses of the gun, Gausslan standard deviations at
anode are: V= 5 k¥, nn = 0,280 and <u = 10 kv, Qw = 0,195. Dimensions

are In mlllimetres.

dissipation P

v, (k) R R loss n % W) 21 e, max (W)

5 0,920 1,25 LN 75 530

5 0,920 1,30 10,6 56 530

5 0,920 1,40 5,6 30 530 ,
10 1,020 u.Nm 9,7 292 3000

10 1,020 1,30 6,3 190 1800

10 1,020 1,40 2,3 69 3000 .

One of the most Important characteristics of an electron gun Is its

28

ror the radius of the beam at the minlmum, in the presence of thermal
spreading. The radius generally used include 95 % of the beam
electrons. It can be immedlately calculated from (3.24) for R = 0
and n =53,

Since

-8 /20
-e

n ’ (3.25)

where o is the Gausslan standard deviation obtained directly from
figure (3.11). &q. (3.25) leads to

r (95) = /T FTogm , {3.26)
The values for ' (95) are shown in table 3.k,
Table 3.4. Radius at the beam minimum including 95 % of beam elactrons.

nm_nc_mn_ow- are done according to the model by Davisson and Calbick
{20,21]. Dimensions are

v, ) o 1 r (95)

5 [0.297 | 0,727
10 lo,242 | 0,592

4. THEORY OF THE BEAM TRANSPORT SYSTEM

In this chapter we concentrate purely on magnetic focusing fields
produced by axially symmetric colls or current distributions.
Ironless colls lend themselves to simple calculations of axial fields

needed In determination of electron-optical properties.
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4.1, The field of a coll

To carry out electron optical calculations we need the axlal field
wn of various coils. It is not difficult to calculate wn for coils
of rectangular cross section although we have to start from flrst
principles since accurate formulas are not available. The magnetic
induction is given by the 1aw of Biot and Savart

= %! [FExT

Bt | —F - (5.%)

r

Applying Eq. (4.1) to an infinltesimal circular current loop of
radius a at position z = p {Fig. 9.1.), __u on z-axls becomes

2w
2 2 2

T u a la™y la” u

B = —2 L 2 ) (4.2)
z Gr .q.w 3 2(a% + (z - E{:

g 5

Thus the contribution of a single loop at' z =L and R = ~p s

2

u IN
dB_ = 0 {8+ p) dpdp o .3)
A T R 7

1]
P | Ir '
] }

a
e — — —] .||| — e ——— —— — — |I.. — II.;mV

Figure h.1. Definition of coll coordinates. OF = R, P =T, 9L =
dxi+dyj, T = Rezk = R{cos ¢ | + sin ¢ jlezk,(9L x T)= -Ridp.
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Here iN/bc describes the current density of the element and N the
number of turns of the coil. The axial fleld becomes

e/2 b/2 .
u_IN { vn
B = o n_ﬂ &D a+p
z 2bc ﬁﬁm + DVM + AN - ﬂvaW\N
-c/2  ~b/f
u IN .
-5 R(2) . {4.4)

This can be Integrated by substitution a + p = t and by changling
the order of integration

b
a+=e Mz +
R{z) .-_.u|o. (z ._..M.:: z

-k 5 - b2
a-o+ .N.vpu + (a Nu

b _ 62 b2’
u+..m.+\ﬁu m.u +?+nu

- (z - W- In Y (4.5)

n..W+ Au-mum... ?|Wg~4

This is an accurate solution and the famillar single loop approximations
(Fert. and Durandeau [30], Lyle [31] and Liebmann [32]}can be obtalned
from Eq. {4.5) by expanding the logarithms into power series up to
second or third order.

4.2. Paraxial approximation

in this section we are going to study analytical and numerical methods
of electron optics to obtain electron trajectories and focal lengths.
The physical situation of an electron coming into the foecusing
magnetic field om:\?«ﬁnn: in Fig. 4.2,
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Figure 4.2. a) Etectron trajectory In magnetic field and b} velocity
coordinates, A = the axial field distrlbution, C = the cardinal plane,

5
v =T,V

. 4 =rd, v, = Z.
in paraxial approximation (r small) we obtain for the field components

aB_(r=0,z)
B, =¥ ua“.. - : (4.6)

from the conservation of magnetic flux through two plane surfaces

at a distance dz from each other _“wu“_. Known velocities Ver ¥, and

v (note: w9 = 0) yleld the components of the Lorentz force

Fe-evx§ %.7)
= e le v, B, + ae?u B, - v, wNy LA m.“.’ )
Hence we obtain the equatlions of motlon
. . . .N :— w-
me = nwu..o +mré , .

...Mln?.mA.vv = n_._..wu - o_.c.‘.n ’ (4.9)

mi = |nw_....w ’ (s, = B, (r = 0,2)), {k,10)
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Substituting (%.6) for 8, in Egs. (4.9) and {k.10) we obtain

. 38

ni = - %452, (4.11)
4, 2 _d um__n

.nlm?:. ov nﬂ 7 ) . (4.12)

Eq. (4.12) is Immediately Integrated

2
2" er wN

mrog = e+ C. {4.13)

The inltial condition ¢(B = 0) = 0 forces C = 0

B
et

R (b.14)

Eq. (4.11) modifiles into

aB
P=- w_wu _.-.m_.ul.~ . {4.15)

In paraxial approximation this is of the second order in r and can
be neglected. Thus we are left with
2.2
. re wu

fe-—, (4.16)
bm

which shows the- radial acceleration is always towards the axis. By
using

h.17)
the energy relation
3
o =T, (k.18)

and the approximation

v ey IWI\E {h:19)

z m
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we obtain
2
2 el r
dr z
Mnrn.u - (&.20)
Stmijarly for ¢
B
d¢ 3¢ oz 7z _
Mm %z dt " Im 7 (h.21)
] /e
.WMI g3 wu (4.22)
and the rotatlon angle becomes after Integration
z
#({z) -ﬂ].mmq B dz , {4.23)
*p

From {k.20) and (4.23) It becomes apparent that knowing B, Is sufficient
to cafculate the behaviour of the electron in axially S...-..nn.._nm_
fields in paraxial approximation.

4.3. The focal length

(4.20) allows calculation of the focal length for thin lenses
(Fig. 4.3.)

riz) rix)

bt —a N '
€

Flgure 4.3. Definition of focal lengths _"a and m._. C Is the cardinal

plane.
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_:nnm«nﬁ_la Eq. (4.20) twice we obtain the electron trajectory [34]

r(z) = vy v w — dtit - z) wNNE. z>a, {b.24)

The derivative of nsnunwn._nnno..< is

) - - gl | e e, (4.25)
. i

Using the geometry (Fig. 4.3) we obtain approximately
f,rib) = rg (ray from left), {h.26)
for'(a) = - 5 (ray from right), {k.27)

For thin symmetrical lenses ma = - f . and hence

-

b
- N_Nzn

o | et - T

a -

Riz)? dz , {h,28)

B———

Writing this equation it is presumed the field is approximately zero
at points a and b. This means for the ray entering from the left

r‘(a) = 0 {i.29)
and from the right.
r'{b) =0 . (k.30)

We apply for electron optics the carresponding optical equation for
thin lenses, [30]

4.31)

Wl
=

+ 1.
4
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where p and q mean the distances of the Image and object from the
origin respectively.

As can be seen from Fig. 4.3. the approximations (k.26) and (k.27)
are In fact crude causing large errors in cases when the Yens fields
are not thin. Since [R(z)dz Is constant for the chosen coll geometry
€q. (4.28) results in an important proportionality

f= “.nﬂ». P (h.32)

To obtain aclear picture of electron motions In focusing meanetic
fields an alternative method was used [35]. It Is a simple numerica)
ald giving sufficlent accuracy to trajectory cajculations and to
determination of focal lengths.

It Is based on solving the electron trajectory equation Im magnetic
field in paraxial approximation {Eq. (h.20}).

2
ri(z) + m% riz) =0 (4.33)

by a difference method. Taking AZ to be the length of the step we
ohtain

I e LA (h.34)

h.b. Design of the focusing lens

Computer calculations using Romberg method of integration were carried
out to compute focal lengths from Eqs (4.5) and {k.28) with various

cofl geometries. These results showed clear deviations from preliminary
trajectory calculations, where focal lengths were obtalned by using

lens equation (k.31). The Focal length calculated from {4.28) turned
out to be 30 % smaller than the one obtained from trajectary calcutations
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{a=33mom, b= 20mm, c =30 mm, N =500, { =206 A at v, = 10 kv).
The error disminishes as we approach large F or enlarge the radiuvs a
of the coil, (Fig. 4.4}, 1t seems that for practical focal Jengths
(f about 20-30 mm) we must use the trajectory method. For weaker
lenses (f 2 100 am) It Is sufficient to apply equation (4.28).

The trajectory method gives a rellable value for f since the heam

{in fact its tu<89°nou obeys to a very good accuracy the lens
equation., This fact can easily be verified from the figures to appear
later in Appendix B.

In all these preliminary and later calculations the thermal spreading
has been taken into account only in the initial values of the beam

at Its minimum behind the anode. This approximation was dictated

by the complications caused by the simul taneous effects of the focusing
field, space charge, and thermal transverse velocities. The focusing
field causes some compensation for thermal spreading but for our
purposes this can be neglected. The effects of space charge has been
taken nto account by calculating approximate asymptotes of electron
trajectories in Jarge-fleld regions, whereas in weak-field regions
where magnetic force is negligible the trajectories have been calculated
accurately.

In all calculations for the approximate radius of the beam edge was
taken r(95). Since at the beam minimum the current distribution was
taken a Gausslan, repulsive forces are stronger in the center of the
beam, where the charge density s highest, than at the edge of the
beam,

The focusing system consists of three successive identical [ronless
colls. The first two of them are placed to work with unit magnification
whereas the third coll 1s placed to compress the emerging ray In desired
ratio discussed in chapter 2.1,

To obtain a focal length approximately 30 mm the parameters of the
colls were chosen: a= 33 mm, b= 20 mm, c = 30 mm, N = 500, | = 2,6 A
{at V = 10 kv). The final focal length was calculated from the
traJectories to be 29,5 mm.
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shown in Appendix D. The distance of minimum r from the coll center
was determined by forcing the asymprotic trajectories of space charge
reglon and weak magnetic field region to coincide. Thus the total

- length of one coll system became 136 mm.

The image distance is equal to the object distance (= 2f = 59 mm)

to obtain wunit magnification. Fig. D.2. in Appendix D shows the
corresponding beam edge trajectory exhibiting clearly the accuracy of
the trajectory method used. For the first and second lenses the
entrance and exit opening angles of the beam are equal. Fig. 0.1,

in >vuo=...=x D describes the space charge behaviour of the beam edge
in all weak-field regions. The exit angle of the second coll is,
naturatly, equal to the entrance angle oy = 7.,6° of the third coil.
How we want to obtain a beam having a }inear compression « = 0,429
with a minimum entrance diameter § in a volume of length 10 mm in the
sample gas chamber,

10 i
We know the slope of the asymptote of the entering beam edge In the
third coil and obtain the emerging beam asymptote by first calculating
the beam minimum radius r_ Eq. (2.6}. This results to § = 0,88 mm

L - .
oﬁm u_o 75 0 and L 0,13 mn enab}ing one to draw the space charge curve in Fig.
IegtA) o D.3. by Eq. (2.8B) and to determine the slope of its asymptote.
Now we know both of the beam tangents In the third coll but we are still

Figure 4.4, Focal lengths from trajectory calcutations {A) and from lacking the distances of cbject and Image, g and p, Fig. 4.5. They

Eq. 4.28 {B) as functions of coil current. Coil parameters: a = 33 mm, can be solved as functions of the focal length f and the angles @, and

b=20mm, c= 30 mm, Nw=500, | =2,6A (at Vatdkv). Oy-

h
-/

We explain first the case of I kv anode accelerating voltage at a i E

xplta % . - e \

perveance of P = (,3 * 10 = we assume to be constant in all subsequent

caiculations. The beam emerging from the gun diverges after the beam \JQ\__7. 2
minimum {where r, = 0.59 nm as we calculated earlier in DC-model} as L 2 m/ + " -
shown in Fig. D.!. fppendix D. We have drawn an asymptote to represent . L mW_

the beam edge in the large field region, where the effect of the i (] ’ _
[T} Ly
space charge is smaill. Co K |
) Figure .5,
The intersection of the asymptote and z-axls is equal to 2f from the - ( ub-wn 5. Definicion of optical terms. The asymptote of the entering
center of the coil. The asymptotes have slopes A and angles a as SR and emerging (= B) beam edge. M = heights of virtual object

and Image, h = height of asymptote intercepts.
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Assuming the lens thin and symmetrical and employing the geometry shown
in Fig. 4.5., we obtain

M
tana, = N {k.35)
tan a, = s (4.36)
2 IF-q "’

q-2f N (4.3
q h

-p (4.38)
p h

Eqs. {4.35)-(4.3B) result to (B = tan @,/tan a,)
P+, (4.39)
q=f(1 +8), (4.40)

From Eqs. (4.39) end (4.40) we solve p andq when f and the asymptotic
angles are known,

The angle a, = 9,38° was determined graphically. Thus we obtain
finally p = 66,7 mm and q = 53,3 mm. Fig. D.3. In Appendix O shows
the space charge behaviour of the final beam edge together with Its
asymptote and Fig. D.4. in Appendix b the respective trajectory.

All these calcutations can be repeated for the 5 kV case assuming that
the coll distances are the same as for 10 kV. One exception from this
procedure Is, naturally, the determination of " in the sample chamber.
This was done by fittlng the beam edge asymptotes because in this
case we do not know k,but q, p and »_ Instead,for the third lens.

Results From these calculations are shown in Figs. D.5.- 8 In Appendix
D. Flg. 1.1. exhibits the a_sm=uwo:u of the final focusing system
construction for 5 to 10 kV acceleration. The fact that the geometry
of the focusing system remaine approximately the same in this reglon
of acceleration can be seen from the space charge behaviour of the

beam Figs. D.1., 3., 5. and 8. In Appendix D, where the z-Intercepts

ho

of the asymptotes remain approximately the same for the two cases.

5. DISCUSSION

The final construction of the focusing system is exhibited in Fig.
1.1. 1t is not necessary to vary the coil positions as the potential
is changed,only the coll current needs to be modified to keep the
focal length constant.

The method used in trajectory calculations |s quite sultable for this
type of problems, where the magnetic field of the lens is known.

The electron-optical calculations have been done assuming lossless
beam advance and keeping the beam perveance constant. In practice
there are losses of beam current in the apertures between the lenses
and colllslons to rest gas molecules. These are the main reasons
for adjusting the coil positions. Alse the thermal velocities of

the electrons spread the beam and move the minima between the lanses

further away. This has to be compensated for by moving slightly each
of the coils., -

Cn the other hand the rest gas lons neutralize the beam and tend to
reduce the effect of space charge.

The cholce of the focal length of the anode aperture.affects strongly
the location of the beam minimum. There seems to be some ambiquity
concerning this matter. However, Willler [36] has pointed out that
the Davisson - Calbick formula for focal lengths Es a good approximatijon
for cone half-angles up to 20°. By examining the graphs shown by
Hechtel [16] we can see that for the chosen perveance 0,3 * _oum

and convergence angle 13° the anode aperture should cause only
negligible errors to the electric fleld distribution on the cathode
surface and thus to the current distribution. In our gun we use a
square rather than circular cathode, and this necessarily causes
unavoidable effects to the current distribution, Tt Zm and the shape
of the beam cross-section. These phenomena, If harmful for the

optical quality of the gun, must be ellminated by experimental by
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"APPENDIX B. The intensity on diffraction grating emitted from a ribbon
source through a slit as a function of distence of the source from the
stit. Slit dimensions & = 0,05 mm, h = 10 mm. The helght of the

grating § = 12,5 mm,

Fig. B.1. The distance of the grating £ » 206 mm and the anale ¢ =
1959 with the source width M as a parameter.
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fig. B.2. As Fig. B.1., L = 545 mm, ¢ = 157437,
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APPENDIX ©. Figure D.1.
Spreading of the beam behind the
anode, r{95). r_=0,59 mm, slope
Jof the asymptote y_na._uun. 4"
u.mmo.. the origin Is at the
minimum of the beam.
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Figure D.2. Beam edge trajectory and its asymptotes for the 1st and
2nd lenses. Parameters are as In Flg. 0.1, 2f = 53 mm.

JAPPENDIX B. Flgure 0.3.
Spreading of the beam behind the
3rd lens. Parameters: wila._w mm,
E Tr2=0,1652, a,=9,38°,
50
| 3
-80 -60 -40 -20 ] 20 40 L 80
Ztmm)
Figure 0.4,

Beam edge trajectory and fts asymptotes for the 3rd lens.
Parameters are as in Fig. 0.3,
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4l V=Skv 1APPENDIX 0. Figure D.5. .
Beam spreading behind the gun.
sl 1The orlgln is at the minimum
m of the besm. Parameters: o !
< 8,73 mm, A, = 0,1260, a,=7,18°.
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APPENDIX D. Figure D.7.
L) T Y T T
Beam cdge trajectory and its
asymptotes for the 3rd lens.
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Parameters: T ~0,73 mm, .=
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: o
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Figure D.B. Beam spreading behind the 3rd lens. The ilope of the
Figure D.6. Beam edge trajectory and its asymptotes for the ist and asymptote is fitted to ym in Fig. 0.7.
2nd lenses, Parameters are as in Fig. D.5.




