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Abstract

This communication shows the track for finding a solution for a sin(kx)/k**2
series and a fresh representation for the Euler’s Gamma function in terms
of Riemann’s Zeta function. We have found a new series expression for
the logarithm as a side effect. The new series are useful both for analysis,
approximations and asymptotic studies. 1
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1 Introduction

1.1 General

The following infinite series are well-known and can be found in many handbooks
and tables ([1], [2], [3], [4]). Some of these series can be solved by elementary
means, some by using line integrals and residues over the complex plane [5],
some requiring rather advanced methods. Laplace and Fourier transforms are
useful for this purpose too.

∞∑
k=1

cos(kθ)

k
= −ln(2sin(

θ

2
)), 0 < θ < 2π (1)
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∞∑
k=1

cos(kθ)

k2
=
π2

6
− πθ

2
+
θ2

4
, 0 ≤ θ ≤ 2π (2)

∞∑
k=1

cos(kθ)

k4
=
π4

90
− π2θ2

12
+
πθ3

12
− θ4

48
, 0 ≤ θ ≤ 2π

∞∑
k=1

sin(kθ)

k
=

(π − θ)
2

, 0 < θ < 2π

∞∑
k=1

sin(kθ)

k3
=
π2θ

6
− πθ2

4
+
θ3

12
, 0 ≤ θ ≤ 2π

∞∑
k=1

sin(kθ)

k5
=
π4θ

90
− π2θ3

36
+
πθ4

48
− θ5

240
, 0 ≤ θ ≤ 2π

There are obvious relationships between these by differentiation with respect to
the parameter θ. It is notable that some series are missing, like

∞∑
k=1

sin(kθ)

k2
(3)

and the ones obtained by integrating it. In some instances it would be useful to
transform this into a different form since its behavior is not obvious at values
larger than zero. It appears that the series resists known methods and no
sensible results seem to be found. In the following, we use the approach of
integration, starting from equation (1). In order to succeed we need to develop
some interesting expressions. Our aim is to convert the series into a form which
is more suitable for various analysis and transforms.

In Section 2 we derive the intermediate relations needed to start integrat-
ing the initial equation and finish with the solution. In Section 3 we shortly
present some direct consequences of the new equations, applied in various ways,
like getting new series expressions for some common functions. Euler’s Gamma
function receives a new functional equation as well. Some simple results are
exhibited which are useful while solving other infinite series. They offer closed
solutions to certain parametric values. Section 4 shows what will happen if the
series are truncated. Some preliminary error estimates are presented. Appen-
dices display some graphs of selected functions, entire and truncated ones.

2 The sin(kx)/k2 Series in Terms of a Zeta Func-
tion Representation

Before integrating equation (1), we start by differentiating the commonly known
Euler’s Γ(x) in Weierstrass form, to get the Digamma function, the logarithmic
derivative

1

Γ(x)
= x · eγx

∞∏
k=1

(1 +
x

k
)exp(−x

k
), x ∈ C, |x| <∞
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ln(Γ(x)) = −ln(x)− γx−
∞∑
k=1

ln[(1 +
x

k
)exp(−x

k
)],

We differentiate this with respect to x and get the following

d

dx
ln(Γ(x)) = − 1

x
− γ +

∞∑
k=1

x

k(k + x)

We can expand the fraction inside the sum as a binomial, swap the summations
and identify it as a representation of the Riemann ζ(s) function

∞∑
k=1

x

k(k + x)
=

∞∑
k=1

(−1)k+1xkζ(k + 1)

We can integrate back to where we started. The integration constant is zero
since at x = 1 we get the familiar Euler’s gamma identity

∞∑
k=1

(−1)k+1ζ(k + 1)

k + 1
= γ

Thus we obtain the following and mark it as S(x)

∞∑
k=1

ln[(1 +
x

k
)exp(

−x
k

)] =

∞∑
k=1

(−1)kxk+1ζ(k + 1)

k + 1
= S(x) (4)

We can derive this in a number of other ways too. We need another function
by putting a negative argument for the same and mark that as V (x)

∞∑
k=1

ln[(1− x

k
)exp(

x

k
)] =

∞∑
k=1

(−1)k(−x)k+1ζ(k + 1)

k + 1
= V (x)

The logarithm is moved to the outside and the sum becomes

S(x) + V (x) = ln[

∞∏
k=1

(1− x

k
)(1 +

x

k
)] =

∞∑
k=1

xk+1ζ(k + 1)((−1)k − 1)

k + 1

Further processing gives

ln[

∞∏
k=1

(1− x2

k2
)] = −

∞∑
k=1

x2kζ(2k)

k

This is due to disappearing of even terms in the sum and to replacing the index
with a more suitable one. We recognize the infinite product as a representation

of sin(πx)
πx . This leads to

ln[
sin(πx)

πx
] = −

∞∑
k=1

x2kζ(2k)

k
(5)
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The range of validity for this equation is

|x| < 1, x ∈ C

We can use equation (5) while integrating equation (1), getting

−
∫
dθ · ln(2sin(

θ

2
)) = −θln(θ) + θ +

∞∑
k=1

θ2k+1ζ(2k)

(2k + 1)k(2π)2k
+ C1 (6)

and apply it in the sum as follows

∞∑
k=1

sin(kθ)

k2
= θ(1− ln(θ)) + θ

∞∑
k=1

θ2kζ(2k)

(2k + 1)k(2π)2k
(7)

The range of validity will be

0 ≤ θ < 2π, θ∈ R

The integration constant C1 is zero because

lim
θ→0

∞∑
k=1

sin(kθ)

k2
= 0

Getting ζ(2k) into an expression is not a sign of trouble since the values are
well known, see Appendix C.

3 Direct Consequences

3.1 Representations for Some Trigonometric Functions

By differentiating equation (5) with respect to θ we will obtain

cos(πx) = exp(−
∞∑
k=1

x2kζ(2k)

k
)[1− 2

∞∑
k=1

x2kζ(2k)] (8)

having a range of
|x| < 1, x ∈ C

With the equations above, we get by division

tan(πx) =
πx

1− 2
∑∞
k=1 x

2kζ(2k)
(9)

or inverted as
∞∑
k=1

ζ(2k)x2k =
1

2
(1− πxcot(πx))

being a previously known result.
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3.2 Connection to Euler’s Gamma Function

It is interesting to see how the Gamma function would relate to what we have
found in equation (5) since it is obviously closely related to equation (4). We
have the traditional functional equation

Γ(1− s) · Γ(s) =
π

sin(πs)

and insert equation (5) to it getting

Γ(1− s) · Γ(1 + s) = exp[

∞∑
k=1

ζ(2k)
s2k

k
] (10)

|s| < 1, s ∈ C

This is a new functional equation for the Euler’s Gamma function.

3.3 A Series Representation for the Logarithm

We can read the equation (10) with the argument s = 1
z as

Γ(1− 1

z
) · Γ(1 +

1

z
) = exp(

∞∑
k=1

ζ(2k)

kz2k
)

and with s = 1− 1
z as

Γ(1− 1

z
) · Γ(

1

z
) = exp(

∞∑
k=1

ζ(2k)(1− 1
z )2k

k
)

z

z − 1

Taking into account the rightmost fraction, we can equate the Gammas in these
two equations and after subjecting it to a logarithm, get

ln(z − 1) =

∞∑
k=1

ζ(2k)((z − 1)2k − 1)

kz2k

By making a yet another change of variable of

z = x+ 1

we obtain

ln(x) =

∞∑
k=1

ζ(2k)(x2k − 1)

k(x+ 1)2k
(11)

with
x 6= 0, x ∈ C

This is a new series representation for the natural logarithm. The derivation of
it can be made in a number of other ways as well, starting from equation (10).
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3.4 Exponential Series

The exponential series is known as Spence function having thus far only an
integral representation. We can transform it by direct substitution to the expo-
nential function by using equations (2), (7).

∞∑
k=1

exp(−kθ)
k2

=
π2

6
− θ2

4
− θ + θln(θ)− θ

∞∑
k=1

(−1)kθ2kζ(2k)

(2k + 1)k(2π)2k
(12)

The parameter θ ∈ C in general and the range of validity is limited to

0 ≤ Re(θ), |θ| < 2π

3.5 Simple Results

From the equations above we can get results for specific values of the parameters.
Equation (7) reads at θ → 2πi

∞∑
k=1

ζ(2k)

(2k + 1)k
= ln(2π)− 1

From the same equation comes at θ = π
2 the following

∞∑
k=1

ζ(2k)

(2k + 1)k24k
= ln(

π

2
)− 1 +

π

6

From equation (5) we can obtain at x = 1
2

∞∑
k=1

ζ(2k)

k22k
= ln(

π

2
)

and at x = 1
4

∞∑
k=1

ζ(2k)

k42k
= ln(

π
√

2

4
)

and at x = 3
4

∞∑
k=1

ζ(2k)( 3
4 )2k

k
= ln(

3π
√

2

4
)

By putting x = 1
2 in equation (8) produces

∞∑
k=1

ζ(2k)

22k
=

1

2

With x = 1
e in equation (5) we have

∞∑
k=1

ζ(2k)e−2k

k
= ln(

π

e
)− ln(sin(

π

e
))

6



With x = 2 in equation (11) we reach at

∞∑
k=1

ζ(2k)(22k − 1)

k32k
= ln(2)

The results above were verified numerically too. The ζ(s) very rapidly ap-
proaches unity when s grows and also some of the series are converging rapidly.
We are tempted to see how accurate an estimate the first term will offer for
some of these series, see Appendices A and B.

4 Truncated Series as Approximations

The behavior of equation (12) at small θ can be easily estimated as follows,
taking only the first term of the series on the right

∞∑
k=1

exp(−kθ)
k2

≈ π2

6
− θ2

4
− θ + θln(θ)− θ3

84

It seems that the new series, equation (12), converges very fast. After seven
terms in the new series (θ≈ 1) we get 18 decimals correct when θ ∈ R. In the
original series on the left, 30 terms are required to reach the same accuracy.
Attempting to get anything like this from the equation (12) by using Taylor’s
series is not working due to resulting diverging series. It is interesting that on
the right side, the series is not important when θ is small.

The behavior of cos(πx), equation (8), at small x is simply estimated by
taking the first term of the series

cos(πx) ≈ exp[−x2ζ(2)](1− 2x2ζ(2))

It will give 12 decimals correct for the cos(πx) if x < 0.01. On the other hand,
if x ≈ 0.20 the first term offers an accuracy of three decimals.

The sin(πx) function, as opened up from equation (5),

sin(πx) = πx · exp(−
∞∑
k=1

x2kζ(2k)

k
)

gives a surprisingly good approximation when x < 0.05 with only the first term
of the series. The accuracy is at least nine significant figures. Even at x ≈ 0.5
we get two significant figures correct with the first term only. Of course, the
exp() function can be expanded as a power series in order to simplify it. The
first two terms of that would be

sin(πx) ≈ πx · (1−
∞∑
k=1

x2kζ(2k)

k
)

The accuracy would then be at least five significant figures with the first term
of the series when x < 0.05. At x ≈ 0.5 the error is about 13% and does not get
any better even if a lot of terms were added, due to the really crude truncation
of Taylor’s series of the exp() function.
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5 Discussion

We attempted in solving equation (3) to transform it into a form which is more
clearly understandable and amenable for further processing. The trigonometric
series has a solution which is in a form more suitable for many analysis, in
equation (7). The corresponding exponential series (12) was obtained directly
from the two basic results, equations (2) and (7).

We needed to develop some intermediate equations to reach these results.
Equation (5) is a fast converging series expansion for

ln(
sin(πx)

πx
)

It has a cos(πx) counterpart in equation (8), being derived directly by differen-
tiation.

Since the equation (7) was derived from a starting point close to the Euler’s
Gamma function, it has a relationship with it, leading to equation (10). That
is a nice even function of s.

Simple algebraic play with equation (10) brings out equation (11). It is
a striking, rapidly converging series representation for the natural logarithm
function. Most of the new series found are fast convergent. It suffices in many
cases to take just a few terms to reach any practical accuracy.
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A Appendix. Graphic Display of the Series for
the ln(sin(πx)

πx ) Function

Equation (5) is depicted in the following Figure 1 around x = 0. It is with one,
two and three terms of the series, including the exact function and error terms.

ln[
sin(πx)

πx
] = −x2ζ(2)− x4ζ(4)

2
− x6ζ(6)

3
+ ..., x ∈ R

Figure 1: Logarithm of the sin(PI*x)/PI*x function approximated by one to
three first terms of the series. The exact function is drawn for comparison
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B Appendix. Graphic Display of the Series for
the Logarithm Function

Equation (11) is drawn Figure 2 around x = 1. It is with one, two and three
terms of the series and the natural logarithm is for comparison.

ln(x) =
ζ(2)(x2 − 1)

(x+ 1)2
+
ζ(4)(x4 − 1)

2(x+ 1)4
+
ζ(6)(x6 − 1)

3(x+ 1)6
+ ..., x ∈ R

Figure 2: Logarithm function approximated by one to three first terms of the
series. The ln(x) function is drawn for comparison
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C Appendix. Values for the Riemann Zeta Func-
tion for Even Integers

In many equations above, we have the ζ(2k) function. Its values can be calcu-
lated from

ζ(2n) =
22n−1π2nBn

(2n)!

Here Bn are the Bernoulli numbers. The first few ζ(2k) would be

ζ(2) =
π2

6

ζ(4) =
π4

90

ζ(6) =
π6

945

ζ(8) =
π8

9450

ζ(10) =
π10

93555
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